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Department of Statistics MAY 1 7 1985
University of North Carolina ’

B

— "7 Abstract

A transition probability function P is said to be stochastically monotone
if P(x,(-=,y]) is non-increasing in x for every fixed y. A (non-homoaeneous)
Markov chain or process is said to be stochastically monotone if its transition
probability functions are stochastically monotone. Diffusions, random walks,
birth-and-death and branching processes are examples of such models. It is
shown that stochastically monotone processes exhibit two basic types of
asymptotic behaviour. Chains with stationary transition probabilities display
a cyclic pattern, and a suitably normed and centered chain turns out to converge
almost surely if it is geometrically growing. Applications to diffusions and
branching processes are added.
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1. Introduction and Summary. We shall start off by considering two examples

of stochastically monotone (SM) sequences exhibiting rather contrasting sample

path behaviour. Let {&n} be a sequence of i.i.d. random variables with mean 0

and variance 1, and S_ = £, +...£ . It is well-known that {Sn//ﬁ } converaes

in distribution to the standard normal distribution N(0,1) and P(1im inf Sn//_ = -o)

nox

= P(1im sup Sn//ﬁ'= «) = 1., Consider further a supercritical Galton-Watson
n-»
Z

n
process {Zn} defined as Zn+] =1Z1£"’i where {gn,i} are i.i.d. conditional on Zn

and P(,F,n .= k) = P> k= 0,1,... Ifms= Z

kp, ¢ (1,») it is known (see
3 k=0 K

e.g. [3]) that there exist some norming constants {cn} with liz Cn+1/cn =m

such that {Zn/cn} converges a.s. to a random variable W whose distribution
function is continuous and strictly increasing on (0,»). Both cases are instances
of SM Markov chains with stationary transition probabilities {Xn} for which

there exist norming constants {an} such that {aan} converges in distribution

to a non-degenerate 1limit . We shall see that under rather general conditions,
the growth rate of the norming constants {an} determines the 1imit pattern of

‘a_X ' and characterizes its limit distribution: if 1im a /a_ =1 then
n'n e n+l""n

P(1im inf anXn < inf supp F) = P(1im sup anXn > sup supp F) = 1, whereas if

n »: n—-~
1im an+1/an # 1 then fanxn} converges a.s., the supp F is either the real line —
or one of its half-lines, F is strictly increasing on supp F, and continuous E
O
except maybe for x = 0. e
—
A transition probability function P i5 said to be SM if P(x,{-~,y]) is —d
non-increasing in x for every fixed y. A non-homoaeneous Markov process ;des
‘oi'A-.-‘
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{x(t); t ¢ [0,)} (or chain {Xn: n > 0}) is said to be SM if its transition
probability functions are SM. If {Xn} is a discrete time non-homogeneous
Markov chain, the stochastic monotonicity of the one-step transition proba-

bilities {Pn} suffices for the stochastic monotonicity of {Xn} (see [12]

Theorem 1). The term "stochastic monotonicity" was coined in [12] and has made

the object of intensive study in a number of articles and monographs (see [10],
(144, [15], [17] and [26]). Two recent papers ([7] and [2]) have dealt with
SM from the point of view of the 1imit behaviour. In [7] criteria for
convergence is probability or a.s. convergence have been derived for chains
converging in distribution to non-degenerate 1imits. In the case when F is
continuous such criteria were shown to be necessary and sufficient. The

object of investigation in [2] was the self-normalized process {Fn(X )Y,

n
where Fn is the distribution function of Xn’ under the assumption

(1.1) sup P(Xn = x)~0
X

Under (1.1), {Fn(Xn)} converges in distribution to the uniform distribution

on [0,1]. Among other properties of interest, [2] contains a detailed descrip-

tion of the case when a.s. convergence fails. It turns out that the sample

space . can be partitioned into some sets H], T2,... and Q], “2"" If
wn = Fn(Xn) then for . - “i 1im Wn(m) exists, whereas if .o . :1 then there
N-=o

exist two numbers a and bi Wwith a; < bi such that 1im inf wn(u) = a and
n*.

1im sup wn(m) = bi' A pictorial description of this sample path behaviour

n—)(D

is given in Fig. 1,1 below.
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Figure 1.1

When {wn} converges a.s. the sets {§2;} are absent, whereas in the situation
described by the example of {Sn//ﬁ }, {Qi} and all but one of {Qi} are absent.

If 5Xn} converges in distribution to a limit F admitting jump points,

convergence a.s. or otherwise may occur irrespective of the properties of {wn}.

Indeed, the strong law of large numbers for {Sn/n} is not prevented by
P(]imkinf wn = Q) = P(]im4iup W, = 1) = 1. It would be therefore of interest
to szudy the 1imit behav?our of {Xn} when its limit distribution is not neces-
sarily a smooth one and even when convergence in distribution does not hold.
We shall aqive here a new approach to SM processes which does not require con-
vergence in distribution or condition (1.1) and enables one to study several

aspects of the 1imit behaviour. Our method is based on the existence of some

random variables {wq} such that E(Wq]Xn) = li? P(Xnkf JnkIXn) a.s. for any

subsequence 1nk} and left-unbounded intervals {J_ 1} with lim P(X_ . J_ ) = g,
"k ke Mk Mk
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q. (0,1) and n = 0,1,... The variables {wq} may admit at most three different
values with positive probability. If P(wq = 0) = 1-P(wq = 1) wq will be said
to be of type I, and of type Il otherwise. Type | variables are of the kind
studied in [7] in connection with almost sure convergence, whereas type I1I
variabies characterize some features similar to those descrited in [2] for

the case when almost sure convergence fails. In Section 2, in addition to
describing {wq}, we give some results relating limit properties of subsequences
of {Xn} as well as a simple criterion for a sequence to be mixing. In Section 3
we study sequences converging in distribution where we shall find it convenient
to introduce two types of limit points and characterize the limit behaviour in
each case. The object of Section 4 is the limit behaviour of suitably normed
and centered Markov chains and processes with stationary transition probabilities.
In Section 5 criteria for a.s. convergence are derived under some assumption

of tightness. Finally, Section 6 contains some applications to branching
processes and diffusions.

The main ingredient of the approach is the identification of the sequence
of conditional 1imit distributions as a martingale, which leads to the Timit
variables qu}. A reader interested in the applications of Section 6 may skip
most of the sections and choose to read only part of Section 2 incluling

Theorem 2.1 and the results referrred to in the arguments of Section 6.

2. The general case. Let S ~- R be the state-space of XL (,F,P) its under-
lying probability space with . =S xS ...., and » = (mo, ”1""‘”n"") the
neneric element of .. We shall agree to write A = B a.s. if 1A = ]B a.s. and
lim ]A = ]A a.s., ! being the indicator function of a set. Similarly, we

= 'n

1

shall say that fAn? converges a.s. if {1, } does so. Further A 3 denotes the

A
n

difference of the sets A and B and AAB is the symuetric difference of A and B.
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We shall say that {Xn} converges weakly to a limit F if lim Fn(x) = F(x) for
n-re

any continuity point x of F, the case F(») < 1 and/or F(--) > 0 beina not
excluded. If F(-») = 0 and F(«») = 1 we shall say that {Xn} converaes in distri-
bution to F.

Let q be a number with 0 < q < 1 and assume that there exist a subseauence

{nk} of the non-negative integers and some intervals {Jn } such that
k

Tim P(¥Y_ ¢« J_ ) = q, where J_ = (-o,x_ ] or (-~,x ) for some {x_}. Consider
ko Mk Mk "k " Ny Mk

further the quantities {P(Xn ¢ Jy | X

x)} for x ¢ supp F_and n >n . By
K K n k

n

stochastic monotonicity P(Xn e J X x) is non-increasina in x, and by the

k ™"
well-known weak compactness principle (see e.g. [22] p. 181) one can extrict a

0 (n) - 1s _ -
subsequence of {n }, say {n;} such that G (q) = ;12 P(Xné ” Jn&lxn = x)

exists for all x ~ supp Fn. The process of extractinag subsequences may be
carried out by the well-known diagonal procedure to produce a subsequence

{nf} of in,} such that Gin)(q) = 1im P(Xn* ¢ Jn*lxn = x) exists for all
k-0 k k

X - supp Fn and n = 0,1,...

a.s., E(wq) = q and E(wq{Xn) = G<n)(q) a.s. forn=20,1,...
n

Proof. Applying the Chapman-Kolmogorov fornuia to P(Xn* CJ WX = x)
k k

and then taking the limit as k»» yields

n+1)<

(2.1) Gin)(q) = JGﬁ a) Pn+1(x,dy) n=0,1,...
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It is easy to check that the property (2.1) defining a so-called space-time

harmonic function Gin)(q) leads to

(2.2) 6" @) = 67 as.
n n

The Markov property in conjunction with (2.2) impiies that {G(n)(q)} is a

X
n
martingale. Because {Gin)(q)} are bounded, lim Gin)(q) = wq a.s. exists.
nso n
The total probability formula yields E(G&n)(q))= E(wq) = q and by the closure

n

property for bounded martingales we conclude that E(waxn) = G§n)(q) a.s. for
n
n=0,1,2,...

Remark 2.1. The functions {Gin)(q)} and therefore the 1imit variables {wq}
seem to depend on the choice of the subsequence {n:} extracted from {nk} at this ,
stage in the proof. It will turn out that Gin)(q) are independent of the choice

of {n¥} and even that Gin)(q) = 1im P{X_ < x an = x) whenever

ko M Mg

Tim P(Xn < x_ ) = q for any {nk} (which may even be the set of non-negative

Kower k — "k
integers). The variables {wq} will turn out to characterize the limit

venaviour of {Xn}.

Proposition 2.1. Let z be a continuity point of the distribution function

of W . Then
q

(a) liT (Xn 1 g o= {Nq >z a.s.

where In = (-m,zn) or @m,znl for some real nuirbers 7zn}.
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(b) either {wq =1} = {Nq >z} a.s. or :wq = 0} = {wq ©Z-a.s.

(

Prcof. According to Lemma 2.1 {Gxn)(q)} converges a.s. to wq. This
n

implies that for any continuity point z of F

{2.3) W < z3 = lim {G<n)(q) <2} o a.s.
q- n-o Xn -

Stochastic monotonicity and (2.3) ensure the existence of some left-unbounded

intervals 1In} such that 1im {Xn € In} = {wq >z} a.s. and (a) is proved.

-+

To prove (b) notice first that two cases may arise: (i) PiW_ > z} < q

or (ii) P(W_ > z) > q. We assume (i) and claim that G&n)(q) ~ P(W. > len) a.s.

q N =
Indeed, by the proven part (a) above P(wq - zan) = lim P(Xm 1 X ) a.s.

o mn

Assume by way of contradiction that Gin)(q) < P(wq : Z~Xn) on a set A of
n

positive probability. Since {In} are left-unbounded intervalc, this may happen

only if Z w7 X for k large enough. It follows that G;n)(q) - P(wq»z;xn) a.s.

k k n

with strict inequality on A. Taking expectations gives q - P(wq - zZ), a

X Z

contradiction that proves that G(n)(q) > P(wq ~ zIXn) a.s. Combining the
n

Tatter inequality with the Markov property and the martingale convergence

theorem yields wq = 1 for aimost all « -wq ©z+. If (1) holds one aets

Gin)(o) - P{WC : z}xn) Aa.5. and a similar reasoning ieads to Ny - 0 for almost
n 1 !

all . W Zr.

G
Proposition 2.1(b) shows that wq may take at most three distinct values

with positive probability, two of them being 0 and 1. We shall say that wc
1

is of type [ if P(wq = 0) = 1-P(wq = 1), and of type II otherwise. For wq of

D 0 T w T e LW S e e D ANEAVIL S Sk S Y S0 TR S ke et St et St i ARl it il S A i peus Sk oris

L a4 4
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type Il the possible values are O, kq and 1 where 0 « kq < 1. Clearly E(wq) =q

implies min(P(wq = 0), P(wq = 1)) >0 for q . (0,1) in case I, whereas in

case 11 P(wq 0) = 0 and/or P(wq = 1) = 0 is a possibility, but P(W_ = k )>0

q q
holds anyway.

Lerma 2.2 (a) If wq is of type I then there exists a sequence of

ieft-unbounded intervals {In; such that 1im 1Xn . In} = {wq =1} a.s. and
n-»x

1 T =
lr? P(Xn . _n) q.

(b) If there exists a subseguence {kn} of positive integers and some

lTeft-unbounded intervals {Ik } such that 1im {Xk ¢ Ik } a.s. exists, then wq
n N-»o n n

is of type I with g = lim (X_ « I, ).
n k
no=e k n

Proof If wq is of type I then P(wq = 1) = q and {wq >z} = {wq = 1} for

any z with 0 < z -~ 1, in which case Proposition 2.1 {(a) implies that

1im Xn : In- = <wq = 1: a.s. for some left-unbounded intervals {In}. This
n -t
necessarily entails lim P(Xn : In) = P(wq = 1) = q, and (a) is proved.

nful

Assure now that condition (b) is in force and notice that

PPA X o= Tim P{X, - I !X ) a.s. where A = lim ‘X, . I ' a.s. Further,

n k k '"m k K
n e n n n- n n

motne proof of Proposition 2.1 (a), one can invoke the martingale conver-

cence tneorer and stochastic monotonicity to deduce tnat 1in P(A Xm) = WA a.s.
- '

“phiec the existence of some left-unbounded intervals 'In’ such that

1 ‘n . I” Aaos. To complete the proof we shall show that ]A = wr a.s.
n- f

o
where w Ty C,')(q) 4.5, and § = P{A).  .ndeed, recall ihat

L=t |
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i
(m) !
m . . . . . i
G, )= ElW_ X 3 o= 1im P I X .S. where Yim P(X ) .
L’)( (Q) C\hO\Xm/ " (Xn* ‘-Jn*I m) .S \ nT‘ Ln*) q !
m ' K o k k Ko k |
[
Since I are left-unbounded intervals, it is easy to see that )
Tim P(IX , b 2 X, - 1 ,%) =0. Thus, if necessary by takina a further X
n* n n n
k- k k k k ) ;
L LSECUENCE, one can arrange to have b P(iX L o X, 1 .7 «. By
: . r, n n n .
k=1 N K K k :
tne Borel-Cantelli lemma P(iX , ¢ J o} # ‘X, - I ,: 1.0.) = 0, and this yields ;
n? n n ny
K k k k
A= Vim X , - J .. a.s. Thus E(W_ X ) = P(Ax ) a.s. for all n, which implies
, n n q'’n n
ke k k
w =1, a.s. and proves (b).
G A
Lemma 2.3. Suppose that wq is of type II and write 9y = P(wq = 1) and
G, = 1 - P{W_ =0). Then 3
]2 v q )
(a) If P(W_=1) - 0 and/or P(W_=0) -0, then W_ and/or ¥_ are of ‘
tvpe 1, 'W 1= W =1"a.s.and {W_>0!=1W =1} a.s. [
" q a, q a, 1
(b} There is no q' in (q],qz) with wq. of type I. ;
Proot. According to Proposition 2.3(a) for z such that kq <z 1in .
case that Plu = 1) » 0or 0 - z kq in case that P(W_ = 0) 0, we get that ]
{ ]
4
there edict sone left-unbounded intervels {100 or «I''' with Tim X o 5. = )
. e )
e b as e b oK TN =W > 0 aLs, respectively, and Lente 2.2(%) ]
n - H ]
compdetes tne nroot of {a). ]
Troorove [0 oassute the contrary ard choose o (0, .G such that W 1
CE e T Teen two Cases may occur: (it q c'oor 1 r at Since ]
]
e Ao T oitalies 1-g. i P{a R .
a | 7
oot e ( STateal 1 B AN {3 \/ K
U 1 E.
oy . 0o DTG e proand i
G ) 5. fm vorntarye 1y watd to ' )
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for x . An and n large enough. Thus (3.5) holas and {Xn . B i.0.; = “la,b) a.s.

Since F{b-)-F(b-<) ~ 0 for any - =~ 0, -, and :,, may be chosen arbitrarily
1 Z

close to b and therefore lim sup Xn = b for almost all . - (a,b).
n-»o

it rerains to consider the case F{b-) « G wnich makes b ¢ point of type
.. Clearty Fib) ~ a5 and F(b) - F(b-) > 0. Tnis is similar to the case of
a considered before and may be dealt with by taking An = (x:Fin)(b)>k(b)+r}

ix:k{b-) - v ~ F(n)(b-) < k(b-) + ¢} or An = {x: Fin)(b) ~ k(b-) + 2. -

3
—
—
o
'
~—
AN

< i < k(b-) + ¢} according as b is of type IT or I,
0 < ki{b-)-c < k{b-) +2- < 1and B = (b - . , b+ ¢ ) for some positive -
n n n n

with J»T ©, = 0and lirz P(X Bn) = F(b) - F(b-).

Consider now the case s.=a and/or 52=b. Since there are no points of

1
type [' smalier or equal to a and/or larger or rqual to b, the above proof may

be easily modified to yield Tim inf Xn < a and/or lim sup Xn > b for almost
n-: n-»eo

all . - “(a,b). We recall that the Borel-Centelli lemma makes it possible that

P(x = x i.0.) 0 for a sequence [xni with 1im P(Xn = xn) = 0. If such a
] e

sequence with 13 K5 exists, then a* - o, and similarly if such s
no-

cecuence witn 11w “ . Pxisty tnen S* b and the proot is finisred.
' ¢
n-:

. ' P e - . . o PR 4 >/ ' o~ g
ndor sore roslriluions on s THC(‘rr‘ ‘: S dnd ?ML\dj WOTD GOV eD

i 7T TSP s the uniform distribution on (0,17, Thecrems -0 ) ard

o oo e o
5.708) mias e vxrrvacted from Proposition (3005 7

dera,w .70 Conditions of the typo &G (v - 1 ar [ according as x - v

‘ ©were considered in [7] in revation to oa.s. converqence and proved
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Then Theorem 9.5.2 of [4] applies and yields

i

P({Xn ¢ A d.0.} v {X_ . B_1.0.)}

n 0 n 0. Notice that

(3.6) P(U X e B.HX = x) > lim P({Xj ¢ B.HIX =x)

j-»m

F(n)(a) - Fin)(a-) ~ k{a) - v-n > 0 for x . An and n sufficiently larqe, which

proves (3.5) for & = k(a)-v-=. It follows that lim inf Xn = a for almost all
n X

SV .\A(a,b).

We prove now that lim sup Xn = b for almost all w « A{a,b). Assume first
n— -2
that F(b-) = q

in which case we may choose . and ¢, with ¢, = ¢, > 0 such that

2 "2 1 2
b - o and b - ‘5 are continuity points of F, (b - Ty b -+«,) I and
ot . : = iy (n), oy L
F(b - 52) F(p - g]) 0. Define An {x.k(b—sW) < Fx (b - L]) <
k(b - -5) + o xik(b - ¢y) - € 3Fi”)(b - p) k(b - ,) + ot where
may be chosen such that k(b - s]) -e, k(b - ;]) + ., k(b -+,) - - and
kit - ‘2) + . . (0,1) and k(b - 22) - k{p - ,1) -2+ >~ 0. Take Bn =
(b - K b‘-z). Then again we get 1im -X . A . = *{a,b) a.s. and we snall
n»«'r I H
show that (3.5) obtains in this case as weil. Indeed
(3.7) PIU kL - B X T x) Vi Pl K )
jepe1 908 . j n
Nt -ont
= Lo o
» »

S Ban 2aa e it 4 |
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Theorem 3.2. Suppose that {X } is a

distribution to F. Then for any y « T on
(a) y is of type I, in which case th
intervals fIn}, where |

a.s. exists and 1im P(Xn

g ¥l

is either (—w,yn

1) = Fly).

(b) y is of type Il, in which case t

y with end-points a and b, @ < b and an event A(a,b) with P(A{a,b))

that 1im inf Xn =

N—»x

a* and 1im sup X_ = b*
noo n
constants a* and b*. In addition, a* < a

and b* > b or = b according as b = S, Or

Proof. (a) follows from Lemma 2.2(a
converge to y if the set {x:u =

To prove (b) assume first that a > s
[ = [a,b) where a and b are finite. The

a may be treated like b with F(b-) = 955

F(x)} with u =

LT

SM Markov chain converqgina 1n
e of the following twc cases occurs:

ere exist some numbers {yn- and

) or (-m,yn], such that 1im X
n':

n n

here exist an interval | containina
-0 such

for almost all & « A(a,b) and some

or = a according as a = s, or - s

] k]

< 52.

N

). It is clear that {yn; may not

F(y) has more than one point.
1 and b - So- Set for definiteness

case I = (a,b) is simpler, since then

a case that will be taken up further

on. Thus, assume a to be to of type Il, and write An = {x: k{a) - « -~
Fin)(a) < k(a) + o} 0 ix: Fin)(a-) < n} where 0 < k(a) - ¢ < k(a) + < <1
and 0 <« - < k{(a) - . Since 1im F&n)(a) = k(a) for almost all
N n
Jim Fin)(a—) < 1im P(W(a) = 1§Xn) = 0- we get that lim an . An» = ra,b)
n-« n TN n-
a.5. Write further Bn = (a - o a+»n) where - is a seqguence of positive
nurbers such that Tim T 0 and 1im P(Xn En) = F(a) - F(a-). Ve shail show
nrbrl\ n»*»:
that for <ome * with G- 1 and n large encugh
en P(U X, ij;xn) for almest all - . X AL

j=n+]

000000
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= F(y). It is easy to see that F(xo) < F(y) and therefore

X < yg for n sufficiently large, which together with stochastic monotonicity

yields F(n)(y) > F(g)(y) where F(g) = lim Fin)(y). However, F(S)(y) v Z

xO - = G = -0
n yn yn x‘yn yn
coe(n) oy : , o (n) .
ard 1im F'\D/{y) « 2, is contradicted. Thus Vim F, (y) = 1 whenever
N X n-~ n

n
Tim X, = x < xo(y). The proof for x > x](y) may be derived by a similar
N0
reasoning.

Consider now the case when y is of type II. We shall prove that

19m Fin)(y) = k(y) for any (xn} with q] < 1im Fn(xn) < Q. Suppose that the
n=- "n N

>

(

contrary holds and take for definiteness lim FX.)(y) < k{y) for some {xé}
N+ n

such that g, < Tim Fn(xé) = Qq < g,. By stochastic monotonicity 1im Fin)(

n—«r) n—»«; n

(n)(

X
n

y) < kiy)

wherever X, XH’ and since fF y)t converaes a.s. to W(y) as n - we get

P(W(y) - k(y)) = P(W{y} = 0) > 1-q > l—qz, which is impossible. Since the
case x - a or x - b may be dealth with as in the proof given above for y of
type 1, it rerdins to notice that k(y) = (F{y) —q])/P(A(a,b)) follows from

the more cenerai result of Theorem 2.1(b).

<erark 3,70 If y is of type II, tnere must exist at least two points x

and seauences  a . Ssypp .1 with Tim x - x and g, < 1im F {(x_} - a,.
n I i ner 0N 2

rdeed F{v} - c, auarantees (3.4) for sume seqguences X Supp Fn}

witio e F_”,n) in each of (q],F(y)) and (?(/},gﬁ

avite o0 = anf v o« o supp Fooand s, T osup cxIx .o osubp f .

2

Chadl S A
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there exists a subsequence {x, } with x_« supp F_ and 1im x_ = x but not a
i Ny N ko Py

whole sequence {xn}, case that could not happen if x ¢ supp F. In what follows

we shall write for convenience lim xn = x wherever x ¢ U, a relation that should

n-oo

pe understood to be replaced by lim Xo = X when no such {xn} with X, ¢ supp Fn
ko Tk

exists, the arguments used in the proofs being the same. Write xo(y) =

inf {x: F(x) = F(y)} and x](y) = sup {x: F(x) = F(y)}.

Theorem 3.1. Suppose that {Xn} is @ SM Markov chain convergina in

distribution to F. Then

(3.4) vin () = 6 (y)
no  n X
holds for
(a) any y . 7, x - U and (xn}t(supp Fn} with 1im X, = X, except maybe for
n-»nr
x « [xg(y)s xy(y) ], for y of type I and
(b) any vy . 7 -a,b*, x . U and fxn» < supp Fn: with 1im xn = x such that

n =t

Tim Fn(xn) exists and differs from Gy and q,, for y of type II.
for

Proof. Consider first the case when y is of type 1 and assume by way of

~

, . 0 , .

cortradiction that there exist « - xo(y, and 0 with ) . Zy 7 7 such that
(n 0 . - J G J : ,

P F(O)(y, Z, for a sequence «xnf witn 1ip x; = ¥” ana x" . We may

n= A n-

supipose without loss of generality tnat z. 15 4 continuity point of F and get

0
a5 in the proof Proposition 2.1{a) that if I: SRS Fin)(y) czg then

i X IO- = W(y) =1 a.s., where IS is either (—w,y:] or (—',yg) and
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b is of type Il write qi = P(W(b) = 1) and qé = P(W(b) > k(b)) and notice

"

that F(b) = E(W(b)) > q, > E(W(y)) = F(y) requires (q],qz) # (qi,qé) which
in conjunction with Lemma 2.3(b) leads to q, = qi. It follows that

F(b-) :_qi < F(b) which makes b a point of type II1. On the other hand,
W(b) = k(b)} # {W(y) = k(y)} a.s. and b / I obtains in either case.

To complete the proof notice that by Theorem 2.1(b) A {W(y) = k{y)}

qq20,
a.s. for any y with gy < F(y) < Ans j.e. for any y in I.

We shall next introduce two types of 1imit distributions {Gx(y)}
corresponding to the types of y defined above. Llet T' = {x: 0 < F(x) < 1} n C(F)
where C(F) is the set of continuity points of F. Suppose that y ¢ T is of type
I and define

1 if x <y
(3.2) 6,(y) = _
0 if x>y
Suppose now that y « T is of type II. Proposition 3.1 ensures the

existence of an interval I with end-points a and b such that A

%9
{W(y) = k(y)} a.s. for any y ¢ 1. We relabel Aq q, 25 A(a,b) and define
1°72
{ 1 if x < a
| F(Y)'q] f b
(3.3) Gx(y) = i O ER] if a<xc<
‘[ 0 if x >b

When a and/or b are infinite, (3.3) undergoes obvious modifications.

Let U = {x: x = 1im x_ for some x_ ¢ supp F_}. In U we have included
koo Mk "k "y

subsequences {xn ' to make allowance for the case when for some x ¢ supp F
k
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for sequences converging in distribution.

Proposition 3.1. Suppose that y is of type II. Then the interval I is

the maximal set of points z of type Il containing y such that {W(y) = k(y)} =
iW(z) = k{z)} a.s. The point a belongs to I if and only if a is of type II];
a and b are of type I'; and (a,b) contains only points of type 112.

Proof. We show first that (a,b) does not contain points of type I!

Assume the contrary, that y ¢ (a,b) is of type I'. Then q < F(y-) 5_P(W(9)=1) <

~

F(y) < q,. However, by Lemma 2.3(a) Ha is of type I with q = P(W(y) = 1) which

is in contradiction with Lemma 2.3 (b).

We prove next that a is of type I'. Let P(W(y) = 1) = F(a). Since

W(y) may take at most three distinct values with positive probability, one can

choose z such that by Proposition 2.1(a) lim {chIn} = {W(y) >z} = (W(y) = 1} a.s.

n-<o

and Lemma 2.2(b) implies that a is of type I. Notice that in this case a / I
by the way a was defined, which agrees with the statement that I contains only
points of type II. If Gy < F(a) then F(a-) < qy = P(W(y) = 1) <« F(a). Notice

now that W(z) is a.s. right-continuous because W(z) is monotone in z and

E(W(z + ¢) - W(z)) = Flz +e) - F(z) >0 as r > 0 is due to the right-continuity

of F. Thus either y = a or y > a and taking the limit of P(W(y) = 1) as
y - a we get from the above inequality that F(a-) < P(W(a) = 1) - F(a), proving

that a is of type II].

Wwe prove next that b is of type I'. If a5 = P(W(y) - k(y)) = F(b) we can

arque as in the case of a to show that b is of type I. If a4y F(b) then b

may be of type I or II1. If b is of type I there is nothing left to prove. If
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We note that the condition assumed in Theorem 2.4 on F' and F'' is always

satisfied if F' is continuous.

Corollary 2.2. Suppose that {Xn} converges weakly and contains a

subsequence converging in probability. Then {Xn} converges in probability.

3. Sequences converging in distribution. We shall now assume that {Xn}

converges in distribution to a non-degenerate limit F. Define

(3.1) FM(y) = tim P(X < yx = x)
X o m — n
where y is a continuity point of F and n = 0,1,... . Theorem 2.1(a) ensures

the existence of {Fin)(y)}, which may be extended to right-continuous functions

with respect to y by defining Fin)(y) = 1?m Fin)(y') for any jump point y of F.
y vy
We agree to write W(y) for wq with q = F(y) and define y to be of type I or II
according as W(y) is of type I or II. If F admits jump points, there must be
values of q for which there is no y with F(y) = q even if wq may be well
defined, since q = ;i: P(Xnk € Jnk) for some sequence {nk} and left-unbounded
intervals {Jnk} is a possibility. A point y of type II will be said to be of
type II] if F(y-) < P(W(y) = 1) < F(y), and of type 112 otherwise. Points of
type 1 or 1, will be said to be of type I'.
Assume that y is of type II and the possible values of W(y) are 0,k(y)
and 1. Write as before q = P(W{y) = 1) and q, = P(W(y) = 1) + P(W(y) = k(y))
and define a = inf {x: x ¢ supp F, F(x) > Gy and b = inf {x: x . supp F,

F(x) 3»q2}. Let I be (a,b) or [a,b) according as F(a) = gy or > q;. Of course,

a and/or b may be infinite. The next result characterizes points of type II

vEIyTvTRn
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T TTY
B ,..,‘ AROAAA
o e :

{Xn.} and {Xn.J under the assumption that {Xn.} converges in probability. For
k k k {

Y

a weakly convergent sequence {Xn} we define convergence in probability to a

not necessarily finite X as the fulfilment of the condition: j
|
*i ’ 1im P({Xn < xt & A{X < x}) = 0 for any continuity point x of F where F is
o N - '
S the distribution function of X.

T

Theorem 2.4. Suppose that {Xn} is a SM Markov chain and there exists
a subsequence of {Xn}, say {Xn.}, converging in probability to a not necessarily
k
A a.s. finite random variable X, and that {Xn.J is another subsequence of
1 k
{Xn},converging weakly. If {y: F'(x) =y, x € C(F')} = {y: F''(x) = y,xeC(F'')}

where F' and F" and the 1imit distributions of {Xn.} and {Xn..}, and C(F')
k k
and C(F'') are the sets of their continuity peints, then {Xn“} converges in
k

-
e i — s W e

Proof. Choose x to be a continuity point of F'' and write F''(x) = q.

probability. 1
Then there must be a continuity point of F', say x', such that F'(x') = q. !
Since {Xn.} was supposed to be convergent in probability, it contains an

k

koo Mk
In view of Lemma 2.2(b) this makes wq of type I. Further, by Lemma 2.2(a) there

a.s. convergent sequence, so that we can assume the existence of lim <X ,<x'} a.s. 1
j

exists a sequence of left-unbounded intervals {In} such that ‘
1

7 [ . = = 3 Wy ] . =
Tim ‘Xn , In} {wq 1} a.s. with 1im P(Xn ¢ In) q. It follows that

N> N-»x©

- Nk Nk k K »on k

An appeal to Lemma 2 of (7] yields now convergence in probability for {Xn..F
k

Tim POIX 4 0 T b2 {Xr;.< x}) = 0 and by transitivity lim P({Xn..ix} A {MQ=1})=O. i
:




ot e Aase NIt et St e dnase Jiate N et St ey B e M A A A ee Mem g See Aan L en Jiae An Miee 'S M A o il i Se e aadb el ad tedl Aad- Aud- SdiCa AEeie s e T ~’

14

where x is a continuity point of F, B is an event in the o-field generated

by XO,...,Xm and m an arbitrary non-negative integer. We shall consider a
generalization of (2.4) to Markov chains which are not necessarily convergent

in distribution: {Xn} will be said to be mixing if for any q - (0,1) for

’ which there exist a subsequence {nk} and left-unbounded intervals {Jn > osuch
o k
3
that Tim P(Xn € Jn ) = q, then
k-seo k k

r (2.5) 1im P(X ¢ J_IX ) =gqa.s. forn=0,1,...
t Koreo Ny n,'n
F‘ )
-~ Theorem 2.3. Suppose that {Xn} 1S a SM Markov chain and there exist
b
N q ¢ (0,1), some numbers {ﬁk} and left unbounded intervals {J. } such that
" My
b
{ ] Tim P(X. ¢ J. |X. ) = qa.s. form=0,1,... . Then {X} is mixing.
, koo n N M n .

Proof. The condition stated is equivalent to W. = a a.s. for some q
q

in (0,1). This implies ?1] = P(W.=1) = 0 and 242 =1 - P(w(i =0) = 1. By
q

Lemma 2.3(b) there are no points of type I in (0,1), i.e. there are no points

of type I at all, which Jeads to P(wq =0) = P(wq = 1) =0 for any q. It

follows that wq = q a.s. and an appeal to Theorem 2.1 yields (2.5) completing

. the proof.
| @ .
{ Theorem 2.3 expresses the rather surprising property that mixing is
>
; ensured merely if (2.5) holds for one value g in (0,1) and some {nk} and
J_ 1}
. "k

[ The next result relates properties of two weakly convergent sequences




Proof. By Lemma 2.2(a) for any r > 0 there exist some left-unbounded

intervals {Jn(q - )}, {Jn(q)i and {Jn(q + ¢£)} such that

li: X, e dla-e)} = {wq_t =1} a.s., 112.{X" e J ) = {wq =1} a.s. and
;iz {Xn . Jn(q + o)} = {wq+C = 1} a.s. Since for n large enough

Jn(q -£) < (-m,xn] c Jn(q + ¢), it follows that {wq_e =1} ¢

112»;nf {Xn ﬁ.xn} S_]i:»iup {Xn f-xn} c {NQ+€ = 1}. But lig P(wq_g = 1) =
lig P(wQ+E =1) = P(wq), concluding the proof.

Theorem 2.2. Suppose that {Xn} is a SM Markov chain and that {wq}
exist for all q - (0,1) and are of type I. If {fn} are some non-decreasing
measurable functions such that {Yn}, with Yn = fn(Xn), converges weakly, then

{Yn} converges a.s.

Proof. To prove a.s. convergence for {Yn} it suffices to show that

1im {Yn < x} a.s. exists for any continuity point x of the 1imit distribution

Noo
; of {Yn}, including points x for which E(x) =1 or E(x) = 0, which may be
the only points of this kind when E is degenerate). Since there are always
points {xnl such that {Yn < xbo= Xy ﬁ_xn}, an appeal to Lemma 2.5 finishes
the proof.

The next result refers to {Nq} of type Il for which P(wq = kq) = 1. Such
a case is related to a condition of mixing given by Rényi [23]. A sequence

{Xn} converging in distribution to a 1imit F is said to be mixing in the sense

of Renyi if

(2.4) 1im P(iXn oxy o BY = F(x)P(B)

e ——— e . e e =

IS WP —

A s s &
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P(W_ = kq) > 0. By Lemma 2.3(a) a = P(W = 1) and q, = 1-P(W_=0). It

q q q
follows that E(wq) =q=q ¥ kqP(wq = kq) =g+ kq(qz-q]). This yields
kq = (a-07)/(a, - ap) and W = Ty gy + (a - ay)/(ap - 4y) 1y a.s. is

now easily derived from the remaining statement of Lemma 2.3(a). To complete

the proof notice that since wq and Nq are of type I, Lemma 2.3(b) makes it
1 2

impossible for (q],qz) to vary with q.

(n)

Remark 2.1. The statement about the existence of Gx (@) in Theorem
n

2.1 (a) contains as particular cases Proposition (3.1)(j) and Remark (3.2)

of [2] removing the restriction (1.1).

Remark 2.2. Although we defined wq in relation to a subsequence {nk} for

which there exist intervals {J_ } such that q = 1im P(X_ ¢ J_ ), the variables
n n n
k k-0 k k

{wq} turned out to be independent of subsequence choice. If wq is of type I
we have seen that there must exist a whole sequence {In} of left-unbounded

intervals such that 1im P(Xn ¢ In) = q whereas for NQ of type II this need not

n-»=o

happen. However, if condition (1.1) is imposed we can define ¢ n) to be the

O

g-quantiles of Xn and get that lim P(X < Cén)) = q for any q ¢ (0,1) so that

n-oo n
in this case W_ exists for all q and, besides, there is no need to confine

ourselves to limits of subsequences when defining {Gin)(q)}.

Lemma 2.5. Suppose that (W} exist for all ¢ . (0,1) and are of type I.

o iy o1 ‘ ' )
Then 1im 'Xn X +wq 11 a.s. for any {xn such that llT Fn(xn) X.

n-o>o
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such that 1im P(Xn 3 Jn ) = q for some sequence {nk; and left-unbounded
K >0 k Kk

intervals {Jn }. Then

k
(a) There exist the random variables G&n)(q) = Yim P(X_ -~ J IX ) a.s
n n''n
. n k<0 k k
and W_ = 1im G(n)(q) a.s. forn = 0,1,... where E(W_[X ) = G(n)(q) a.s. for
q o Xn g''n Xn
n=20,1,... and E(wq) = q.
F (b) The variables W_ are of two possible types: I, if W =1 a.s.,
q QW=7
C and II, if W_=1 . + (g-94)/(q,-q5) 1 a.s., where
. {Wq] } Q795
-~ -y = 0 = oo
A = =1 = 1}, LW =0 f
| @ 4,9, {Nq2 P {wq] }, 0 < 4, <9< g <1 wq] or Hq] (of type I)

T according as g4y = 0 or > 0, and wq =0 or wq (of type 1) accordina as q2=1
{ 2 2
or < 1. The quantities 9 and 9y do not depend on the choice of q in (q],qz).

- Proof. According to Lemma 2.1 G&n)(q) = E(Ninn) a.s., which in view of
- n
Lemma 2.4 does not depend on the choice of {nk} and {Jn } such that

k

Tim P(X ¢ J ) = g. Thus any subsequence of {P(X ¢ J_ X ), k =1,2,...}
ke "k Nk " M "

n)(

n

contains a further subsequence converging to G g). It follows that the whole

(
X

subsequence {P(X ¢ J_ IX ), k = 1,2,...} converges to the same limit G(")(
Ny ' n Xn

q).

The remaining statement in (a) follows from Lemma 2.1.

To prove (b) recall first that according to Proposition 2.1(b) wq may

take at most three distinct values with positive probability. If P(wq = 1) =

' 1 - P(W =0) wq is said to be of type I, in which case it is obvious that

| q

¢ | = i = = = i 1
'® Aq ]{qu]} a.s. with E(wq) p (wq 1) = g, whereas in the case when wq is

| of tvoe IT there are three possible values for wq: O,kq and 1 with
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an i-atom if either P(p) = 0 or P(A) = P(A) for any 4 such that

= 1i i Vowi . =
A ll: {Xn € Ln} a.s. for some intervals {Ln, with L, Jn’ n=0,1,...
Lemma 2.3 (b) yields the following.

Corollary 2.1 If wq is of type II then {wq = kq} is an i-atom. .

The sets {wq = kq} will turn out to correspond to the sets 'w%} described

in Fig. 1.1 for the sequences {Xn} convergent in distribution.

Lemma 2.4 The random variables {wq} do not depend on the choice of {nkl

and {J_ ! such that 1im P(X_ ¢« J_) = q.
My koo Mk Mk

Proof. Choose two subseguences {nk} and {ni} such that

n

1im P(Xn . Jn ) = Tim P(Xn. ¢ J_ .} = q for some left-unbounded intervals {Jn !
K-e k k k- K k k

and {Jn,}, and construct the 1imit variables wq and wé corresponding to the
K
two subsequences. Assume first that W_ is of type 1. Then Lemma 2.2(a) and (b)

q
may be invoked to show that wa is also of type I, and a reasoning may be
easily extracted from the proof of Lemma 2.2(b) to yield that {wq =1} = {wa =1} a.s.
This is equivalent to wq = wa a.s. which finishes the proof in case I.
Assume now that wq is of type II. Then wé is also of type II. Recall
the notation used in Lemma 2.3 and write q and a4y for the quantities attached
to wq and qi and qé for the gquantities attached to wé. Since 4, 7 Q< q and

a7 q- qé, (q],qz) and (qi,qé) may either partly overlap or coincide. Since

W , W , W ,, W, are of type I, we get W', = wq. and W', =

' , W_, by the proven
%2 9 % 9 1 9 92

part of Lemma 2.4 and an inspection of Lemma 2.3 is easily seen to lead to

4 = 9 and 9, = aps completing the proof.

Theorem 2.1. Suppose that {Xn} is a SM Markov chain and choose q - (0,1)
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useful in deriving some properties of F as strict monotonicity, continuity,

finiteness of moment, etc. (see [8]).

Remark 3.3. I{ all y - [ are of type I, {Xn} may not converge a.s. By
Theorem 2.2 convergence a.s. may fail if not all {wq} are of type I.
Such a situation may arise 1f F admits jump points resulting from
lumping together some values of q for which wq are of type II. Also if F

has intervals on which it is constant, Theorem 3.2(a) cannot be invoked to get

im {Xn € In} = 1im {Xn < y} a.s. for any y ¢ i" as done in [7] when provina

N0 N0
[.* a.s. convergence. The minimal condition on F guaranteeing a.s. convergence
seems to be:

(b) F is either continuous or admits jump points {ci, i ¢ 0} such that
’. (F(ci + §) - F(c].))(F(ci-) - F(Ci - 8)) >0 forany § >0 and i « 0. This
condition was considered in [7] and shown to entail the equivalence of a.s.

convergence and convergence in probability.

4. The stationary transition probability case. Assume that {Yn} is a chain

with stationary transition probabilities, {an} with a3, > 0 and {bn} are two
sequences of constants making {an(Yn + bn)} convergent in distribution to a

non-degenerate 1imit F. Write Xn = an(Yn + bn) forn=0,1,..., Fx(Y) =

Tim P(X_ < xiYy = x) where y is a continuity point of F, and un(-) = P(Y )

3 e

$.> for n = 0,1,... Further v <~ 31 is to denote that v is absoluteiy continuous
E< with respect to u.

;

& Lemma 4.1. Suppose that v, << vgy. Then there exist two constants .

L 2 . o . o o

E and # such that ll: an+1/an =, and lim an+l(bn+1'bn) = § with O v <« and

..co(?-’m.
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Proof. Let y be a continuity point of F and

(4.1) Pl < ¥) = [PUX, < ¥1Yg = x)vp(dn)

The dominated convergence theorem applied to (4.1) yields

(4.2) F(y) = Vim P(Xn <y) = jFxKy)vo(dx)

N
Using the stationarity of transition probabilities one gets

(4.3) Pla (Y, +b) <y) = [p(Y

n'n+l n j o+l < y/ag = b lYy = x)vy(dx)

= )[P(Xn < yl¥g = x)vy(dx)

jP(Xn j.y)}Yo = x)AvO(dx)

where ) = dv]/dvO stands for the Radon-Nycodym derivative of 2 with respect
to Vg The dominated convergence theorem applied to (4.3) yields the existence

of F](y) = 1im P(an(Y

n-oo

nel * bn) <y) and

(4.4) F](y) = J(Fx(y))\\)o(dx)

Since Vg (0 « % <») =1 one may easily see that F] is not degenerate. Indeed,
if F](y) where 0 or 1 according as y < c or y > ¢ for a certain constant c,
then by (4.4) the same property would hold for Fx(y) for almost all x with
respect to 2 and by (4.2) F would be degenerate as well. Thus both

{an(Y + bn)} and {an(Yn + bn)} converge in distribution to non-degenerate

n +1]

limits and the result now follows from Khintchine's theorem on convergence of

.
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types (see e.g. [22] p. 2°6).

Lemma 4.1 is an improvement on Theorem 3 of [5] where a stronger condition

was assumed on F. We notice that stochastic monotonicity was not used in the proof.

Lemma 4.2. Suppose that the conditions of Lemma 4.1 are satisfied with
o # 1. Then there exist some constants {bé} such that {an(Yn + bé)} converges

in distribution to a non-degenerate limit and lim a

Him (b' . - bn) = 0.

n+1' "n+l

Proof. Take bﬁ = bn - Ao/an where Ay = 8/(1 - a). Since an(Yn + bn) =

Xn - xo, convergence in distribution of {an(Yn + bﬁ)} to a non-degenerate 1imit

b ) -2

clearly obtains. Further an+](b -b') = a n1 " Pn 0ot an+1/anA0’

n+l n n+1

and taking limits gives 1im a
n-o

n+1(bﬁ+1 - bé) =B - Ny tay = 0, finishing the

proof.

Remark 4.1. Suppose that 8 = 0 and Xg is a continuity point of F. Then
anxo is also a continuity point of F for any integer n. Indeed, using Lemma

4.1 in (4.4) yields F1(x) = F(a x) and

(4.5) F(a(xO +€)) - F(a(x0 -e)) = )((Fx(xO +e) - Fx(xO - a))}vo(dx)

On the other hand (4.2) implies
(4.6) Flxg + ) = Flxg - €) = J((F (g + <) - F(xg - £))vgldx)

and it is clear that if F is continuous at Xe and we let » » 0 in (4.6), the

integrand must tend to 0 as well for almost all x with respect to Vg i.e.

FX(-) turns out to be continuous at X9 for almost all x with respect to v
By (4.5) this implies that Xq is a continuity point of F if and only if

0




is a continuity point of F and therefore if X0 is a continuity point of F,
so will be anxo for any integer n.

Similarly, one may show that F(x2) - F(x]) = 0 for Xy > X entails
F(qnxz) - F(anx]) = 0 for any integer n.

Let O be the shift function defined on :» by G(mo,w],...) = (m],mz,...)

and write OA = {Ow:w ¢ A}, GOA = A, O']A = {u:0w < A}, OkA = O(Ok_]A) and

o7Kn = 07N (7K

A) for k = 1,2,... . If J is an interval with end-points
X and Xos 0J is to denote the interval obtained from J by replacina x] and
X by Xy and Xy respectively.

We shall further need the follow’na.

Lemma 4.3. Suppose that Vi 7T v and that for some left-unbounded

intervals {Jn} Tim {Yn € Jn; a.s. exists. Then lim {Yn+k € Jn} a.s. also exists

n—>oo n-+o

K .. . ,
and 0" 1im {Yn € Jn} = 1im {Yn+k ¢ Jn} a.s.

n-»o n-»x

This result can be extracted from Theorem 5 of [1] and Lemma 2 p. 91 of [6].

Theorem 4.1. Suppose that {Yn} is a SM Markov chain with stationary

iy iy e v _ . }
transition probabilities, vy << Vg and {Xn; with Xn = an(Yn + bn’ converaes in
distribution to a non-degenerate limit F with = # 1. Then, if necessary after
a recentering, A = 0 and

(a) there exists at least one point Yo of type I'

(b) if yg # 0 is of type I(I1;) then u”yo is also of type I(II,) for ail n

(c) if Yq # 0 then any interval J of points of type II2 of the same siagn
n+1
YO 0’
mnyo) for Yo - 0) for some integer n. If J is an interval of point of type

as yq is contained in an interval (q”yo, 4 ) for Yo ~ 0 (or (“n+1y

IIZ then 5"J is also an interval of points of type II2 for all n.
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Proof. Notice that by Lemma 4.2 one may take g = 0. Choose y to be a

continuity point of F. Then by Remark 4.1 ay is also a continuity point of

F and
(4.7) F)((g) = Vim P(X_ < y[Y, = %)
Moo
= ;12 P(am(Ym+] + bm) < le1 = x)
- 7 (ay)

1

where Xg = ao(x + bo) and Xy = a](x + b]). Assume by way of contradiction
that there are no points of type I', case that occurs only if W(y) is a.s.

constant for all y. Since E(w(y)|xn) = Fin)(y) a.s. it follows that F§H)=
n n

E(W(y)) = F(y) a.s. Using this in (4.7) for n = 0 and 1 gives F(y) = F(ay).
This leads to F(y) = F(any) for all n and if y > 0 one gets F(y) = 1 whereas
if y < 0 one gets F(y) = 0. But such F is degenerate and we reached a contra-
diction that proves that there exists at least one point Yo of type I' and
(a) is proved.

We prove (b) for Yo of type I (for type II] the proof is similar). By
Theorem 3.1{(a) there exist some left-unbounded intervals {In} such that

T = 1im {Xn ( In} a.s. and P(T) = F(yo). Further by Lemma 4.3

N>

+b ). It

Ne _ 4 o . . -
0T = 1lim {Xm+n - Im} a.s. exists for all n, where Xm+ a (Ym+n N

n n
Mo
remains to prove that 1im P(X
Mmoo

nen € Im) = F(unyo) which we shall confine

ourselves to prove for n = 1. By (4.3) and (4.4) we get
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A

(4.8) [F(ax) = P(X_,qel )} < jin(y) - POXT 1Y = x) Py (dx)

But F§n)(y) = 1im P(Xm ¢ Iman) a.s. for all n, and takina n = 0 we aet
n Moo

9 | . = o= i \
;12 \Fx(y) - P(Xm ¢ Im[Y0 x)! =0 for almost all x with respect to

0
Using this in (4.8) completes the proof of (b).

To prove (c) notice that there is no interval of points of type 112
straddling (anyo,an+]y0) for some n. Indeed, this is included by the fact
that anyo and un+]yo are of type 1I', Further, if J is an interval of points
of type 112, then 0"J must also be an interval of points of type II?, since other-

wise if y were of type I' with y ¢ 0"J then «™"y ¢ J and by (b) & "v would be of
type I'. This contradiction completes the proof.
Corollary 4.1

(a) If (-=,0) does not contain any point of type I', then F(0-) = 0

(b) If (0,«) does not contain any point of type I', then F(0) = 1.

Proof. (a) and (b) being symmetric, it will suffice to prove (a). We
show first that J = (-=,0) is the maximal interval of points of type 112
containing y with y < 0. Indeed, according to Theorem 4.1 either 0 is of type
I' or there are points of type I' in (0,:) for any € > 0, in which case
Proposition 3.1 implies that 0 is of type I' and J = (-»,0). It follows that
gy = 0 and F{y) = E(W(y)) = k(y)q2 for y < 0. Consider now the sequence

7 =a_(Y

. RO bn) and agree to attach the prime to the symbols for an}

when referring to {Zn}. We claim that J' = (--,0). Indeed, since the limit
distribution of (Zn} is F'(x) = F(ax), Theorem 4.1(b) implies that {Xn} and
{Zn} must assume the same points of type I, II] and 112. Since J = (-»,0)

we get J' = (-+,0) as well. We show now that k'(y) = k{y) for y < C. Indeed,

e - A L - e L e .- L. )
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by the stationarity of the transition probabilities of {Yn} we get P(ZniinW=x) =

P(X, < yiXx = x) for n >m and recalling the definitions of {Fin)(Y)},

n
{F;(n)(y)} and Theorem 3.1 we get k(y) = k'(y) for y < 0. Recall that

either of W_ > 0} or {W' , >~ 0} may be expressed as 1im {Y_ . J } a.s. for
492 42 Noo " n

some intervails (Jn}, and by Lemma 2.3(a) both wq and wé are of type I. These
2 2

considerations in conjunction with Lemmas 2.2(b) and 2.3(b) boil down to
qé =g, It follows that F'(y) = E(W'(y)) = k(y)q2 = E(W(y)) = F(y) for
y < 0 which is incompatible with F'(x) = F(ax) for o # 1 unless F(0-) = 0 and

the proof is finished.

Remark 4.2. An interesting consequence of Corollary 4.1 is that yO#O of
type I' always exists. This property in conjunction with Theorem 4.1 leads
to the conclusion that 0 is also a point of type I'. Another consequence of
Theorem 4.1 is that any interval (-e,e) with ¢ > 0 contains all the information
concerning the points of type I, II] and 112 of the real line. In particular,

if 1im {Xn “ x} a.s. exists for x ¢ (-r,2) then {Xn} converges a.s.

n-no

Remark 4.3. The case :=1, ¢#0 may be treated in a similar way, taking

into account that " Tim {X_« I } = lim iX_ . I } a.s. where 1 is obtained
m m m m,n M, N
Mo Mo
from I by replacing Yo, with Y, * D (see (6]). Theorem 4.1(a) carries over
without changes. Ffor Theorem 4.1(b) and (c), the requirement Yo # 0 is no
longer necessary whereas unyo, Jna and ."'b are replaced by Yo + n-

)

a + n-and b + ng respectively. Coroilary 4.1 may also be extended to this

case on using a similar proof.
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Theorem 4.2. Suppose that {Y(t): t « [0,2); is a right-continuous Markov
process with stationary transition probabilities, a(t) and b(t) some contiruous,
monotone functions with 1im a(t) = 0 or « such that X(t)=a(t)(Y(t)+b(t)) converaes

{00

in distribution to a non-degenerate limit F. Assume that Vi << Vg where

L (-} = PLY(t) < -). Then lim a(t+s)/a(t)=o> and Tim a(t+s)(b(t+s)-b(t))=Fs

t 0 o0

for some constants ¢ and 8 and all s > 0. In addition, one of the followina cases

OCCHUrS:
(a) o=1 and 8=0. If in addition, lim P(X(t) < x]Y¥(0)=y) = F(x) for all x and
toeo -

y, then P(1im inf X(t) < 51) = P(1im sup X(t) > 51) = 1, where s1=inf supp F and
s, = supn suoo F. -

(b) either p# 1 or B # 0, in which case there exists a random variable W

such that 1im X(t) = W a.s. In addition, supp F is either the real line of

t
one of its half-lines, and F is strictly increasing on its support. If p =1,

F is continuous, whereas if p # 1 and 8 = 0, F is continuous except may be for

x = 0.
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Proof. We shall first show that 1im a(t + s)/a(t) = 0> for some constant )

t-o .
Uy
o and all s > 0. To this aim let us consider the skeleton chain {X(n&):n>0} 1
for a certain § > 0. According to Lemma 4.1 lim a{{(n+1)8)/a(n3) = (&) 5
n-roo i
exists. Take further &' = &/k for a positive integer k and write ~(&') = fﬁ
Tim a((n + 1)&")/a{nc'). But a{{n + 1)5)/a(n") = .:
Nn-+« .\'
__~J
al{n + 1)&)/a((n+ 1) -8Mal((n - 1) =8")/a{(n + 1)&-28'}...a(ns+5")/a(n") and 33
taking ns» we get (%) = wk(ﬁ'). Also, it is easy to see that if k' 15 a _5
positive integer then «(k'&') = qk (5') and therefore ~(k'S/k) = wk /k(f). .?
3
Thus for any rational number r > O, ur(é) = «(ré). Consider further an -
3
1
e
1
- %, VPN - o N, ORI, Yh i W S-S a aln’a " - L adl
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arbitrary number s and write h(nS) = a(n® + s)/a(n&). We shall show that

1im h(n&) exists for all & > 0. Indeed, 1im h(n&) exists for § = s as shown

N-»oc N-=o
above. Consider now s' = s/k for a positive integer k and h'(ns) = a{(n® + s')/a(n*).
As avove we can show that 1im h(ns) = (1im h'(ns‘))k. Thus

- N

Tim h(ns) = 1im a(ns' + s)/a{ns') = 1im h(ns'). It is easy to see that we

can replace here s' by a multiple of s' and therefore lim h(né) exists and does

n-—co

not depend on § for 6§ = rs where r is any rational and positive number. Choose

now &1 = r1s and 82 = rzs with r] and r rational such that 0 <« 8] < &< 62 < w,
By the monotonicity of a(t) h(nd]) < h(ns) i_h(néz) and since 1im h(né,)=Tim h(n52)
N~ n-»o

one gets that lim h(n&) exists for all & > 0. We are now in a position to invoke

n-k)’&
a result by Kingman [18] asserting that if 1im h(nd) exists for all & > 0 and h is con

n-eo

. . . S
tinuous then 1im h(t) also exists. Ue have already preved that o (&)=u(s&) for s

t-o
rational. It is easy to see that this equality extends to any s > 0, and taking
n(1)=3 we get 1im h(t) = 0>, A similar reasoning yields lim a(t+s)(b(t+s)-b(t)) =
o t-so0

2s where ¢ = lim a(t + 1)}(b(t + 1) - b(t)). If o =1and 2 =0

toe

Theorem 2 of [5] makes {X(t): mixing and (a) foliows from Theorem 3.2{b). Assume
now that » > 1 and 8 = 0, which according to Lemma 4.2 may be achieved, if
necessary, after a re-centering. Since by Remark 4.2 any skeleton chain {X(n'):n>J:
assumes at least one yO#O of type I', we deduce that all points of X{(n¢): nmust

be of type I'. Indeed, by Theorem 4.1(b) kao is also a point of type I' for

IX(n)Y.  If we choose 3' with * # «Xy_ for all k, then by Theorem 3.1 -X(t).t U

0
where U = ‘n%:  in&'} assumes the same points of type I' as {X(n-) . Since =" is
at our disposal we conclude that {X(né&)" assumes only points of tvpe 1'.

Syrther. accordina to Remark 4.1
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F(xz) - F(x]) > 0 implies F(psxz) - F(QSX]) > 0 for any s, which makes F
strictly increasing on it support. Remark 4.1 also implies that if x # 0 is

a jump point for F then psx is also a jump point for F, and s being arbitrary
we would get an uncountable set of jump points, which is impossible. Thus,
there are no jump points for F except may be for x = 0. Since F is continuous
and strictly increasing on its support, an argument already used in the course

of the proof of Lemma 2.5 yields that 1im {X(tn) < x! a.s. exists for any

n-xo
continuity point x of F and this is tantamount to a.s. convergence for {X(tn)}.
Since {X(t)} was assumed right-continuous we conclude that {X(t)} converges a.s.
(see e.qg. [22])

The case o = 1 and R # 0 may be treated in a similar way. Since {W=0}

is no longer invariant, 0 cannot be a jump point for F in this case.

5. A criterion for a.s. convergence. Theorem 4.1(b) asserts that under

some conditions on : and 3, convergence in distribution for ‘X(t)} entails a.s.
convergence. In many cases of interest it is rather difficult to derive con-
vergence in distribution, such that a tractable criterion of this kind seems of
interest. We shall derive nere such a criterion assuming oniy tightness for
“X{t)- and a condition on the transition probability functions :PS‘ for
s . (0,7) and some ¢ ~ 0.

A random process ‘- (t)- wiil be saic to be tight if any subseguence therecot
contains another cubsequence converginag in distribution to ¢ non-identically
0 random variable.

Further we shall consider the followinag conditions:

(A) Either 1 -~ Tin inf a(t + s)/alt) Vimosup alt 4o alt) Cor
t - te
7 Pinoinfoa(t ¢+ L et Tine sum alt + o) a{t) T for ware o« U.
- te

ke d

dhdnd aeodh _
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(B) There exist 6 > 0 and p # 1 such that
Tim P(|Y(t + s)/Y(t) - o>1>e IX(t) # 0) = 0
t0
for any ¢ > 0 and s « (0,8).
{B1) There exist 6 > 0 and p # 1 such that
Tim P(Y(t + s) ¢ (c(t)o>(1 - €), c(t)p (1 +e))|V(t)= c(t)) = 1
too
for c(t) = xa(t) with x ¢ R, € >0 and s ¢« (0,8). The main result of this

Section is the following:

Theorem 5.1. Suppose that {Y(t): t ¢ [0,»)} is a non-negative SM Markov
process with stationary transition probabilities, X(t) = a(t)Y(t), where
{a(t)} are some constants that satisfy condition (A). Assume further that
v

<< Vg for t > s where v () = P(Y(t) ¢ -). Then the tightness of {X(t)}

t t
in conjunction with condition (B1) is a necessary and sufficient condition for

the existence of some constants {a'(t)} with Tim a'(t + s)/a'(t) = o° for

t o0
all s > 0 such that {a'(t)Y(t)}! converges a.s. as t » «» to a non-degenerate
random variable X. If F(x) = P(X < x) then supp F is either the real line or

one of its half-lines, F is continuous except may be for x = 0, and strictly

increasing on supp F.

Remark 5.1. In view of Theorem 4.1, condition (B) 1is necessary for a.s.
convergence when b(t) = 0. It may be shown that (B) entails (B1) if iX(t)} is
tight by reasoning in the manner of (8] (see also [7]).

In what follows we shall assume that the conditions of Theorem 5.1 are

in force. We shall need the following two Lemmas:

. .- . o ol - s - . . oo Ca et -
e oy PO Y. - . T N S~ g g P
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Lemma 5.1. Suppose that for some left-unbounded intervals (It
I

1 -

Tim {Y(t) « I.} a.s. exists. Then for any real s o> 1im Y(t) . e

t)

Tim {Y(t + s) « It} a.s. also exists.

t-o0
Lemma 5.2. Suppose that {tn} is chosen such that {X(tn)} converges in
distribution to a limit F as tn + o, Then F is non-degenerate, and there exists

g with F(0) < q < 1 such that wq is of type I.
We delay the proofs of the above Lemmas to explain now the idea of the

nroof.

Qutline of the proof of Theorem 5.1. We shall confine ourselves to the

case b(t) = 0 and Y(t) > 0. By Lemma 5.2 we know that there exists x such that

F(O) < P(W_~ x) < 1. Since {Y(t)} was assumed stochastically monotone, we

deduce that

Tim {Y(t) « 1.}

It )
(5.1) W > x; t

t >0

where It is either (-+,x,) or (-m,xt] for some numbers {xt}. It will be shown

t
that we may assume that It = (-w,xtj such that (5.1) and Lemma 5.1 imply that

Tim ¥ (t + s) - xt} a.s. exists for all s. Since condition (B1) will turn out to
t&(‘

tead to 1im «x /X, = pS for some p with o 1, we get
o HSTTR
(5.2] Vim (Y(t + s) < x, b = lim {Y(t) - °x.} a.s.
t -t oo h t

: Y(t) - xt a.s. exists

As s in(5.2) is arbitrary, we conclude that lim {x

e

for all x, which is tantamount to a.s. convergence for {xle(t)i.
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Proof of Lemma 5.1. This lemma is a continuous time variant of Lemma 4.7,

Proof of Lemma 5.2. We shall assume that 1 < Tim inf a(t + s)/a(t) -

e

1im sup a(t + s)/a(t) < =, as the other case satisfying condition (A) is

reducible to this one by taking 1/Y(t) instead of Y{t).

Choose x to be a continuity point of F and let F(x) = q. Then

(5.3) Palt )Y(t, +s) < x) = P(X(tn) < x]Y(0) = ¥y (dy)

where s > 0. Taking the 1imit as n - = yields

(5.6 3 el @)ty = el
S

where F(S) is the 1imit distribution of {a(tn)Y(tn + s)} and

G§t)(q) = Tim P(X(tn) < x|{Y{t) = y). Assume that f is decenerate. Then

n—»o

Gio)(q) = 0or 1 a.s. with respect to Vo and Ve since Ve < v By (5.4)
F(S)(x) = F(x) and 1im inf a(t + s)/a(t) > 1 in conjunction with the tiahtness
tome

of X(t); is contradicted. Thus F is non-degenerate. Suppose now that wo is

A
a.s. constant, i.e. G(O)(q) = F(x) a.s. with respect to Yo and Ve and &s above
we get FCS)x) = £(x) for any s > 0, which is impossible. Thus W_ is not a.s.

constant and therefore we may choose a point z, which is a continuitv point of

the distribution function o* wq. such that 0 - P(Nr < 2) < 1. Then by an alreacy
L

familiar arqument we know that there exist some left-unbounded intervals th\

such that 1im {Y(t) . J,} = (W_ > z} a.s. and if P{W_ > z) ~ F{0), Lemma 2.2

oo t G q

concludes the proof. Assume therefcre that P\AO - z) < F(0). According to

Theorem 2.1 this situation corresponds to the case of wq of type IT with
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“lw o= 1) 0 and P(W. = 1) + P(W_ =k ) =1. Choose z » kc. Since by Lemma 5.1

G
1wq = 0= im {Y(t + 5) . Jt} a.s., if we take into account the assumption
t o

- 5 1 , ST =] =t
]1€’jnf a{t + s)/a(t) 1 we get Jt+5 >, for t large enough and & ‘wq 1,",wq 1

sowever, we know from [6] that P(wq=1;/] entails P(Usﬁwq=1?)<1. Since wq admits

ooty two values with positive probability, Lemma 2.3(b) makes it impossible that

wq=];)*P(wq:]). Thus {wq=1} is an invariant set, and since {wq:kq¥
is its complementary set it must also be invariant. Therefore wq is an invariant
random variable. It follows that E(G(O)(q) = E(G(S)) = F(x) and (5.4) implies

YS YS

F(S)(x) = F(x) case which we considered before and turned out to be absurd.

Proof of Theorem 5.1.Step 1. We first show that if A = 1im {Y(t) - J,} a.s.

[ t
where F{0) < Yim P(Y(t) « Jt) < 1 then P(CSA) > P(A) for any s > 0. The
t <
existence of such & was ensured by Lemma 5.2. Recall that = = lim inf a{t+s)/a(t)>]
t»‘m\
and obviously 1im inf a(t + ks)/a(t) z_nk for any k > 0. Notice further that if
t ~o
Xt 1s the right end-point of Jt, then, if necessary extracting a further
wubsequence of ftn}, we may assume that a(tﬁ) - Xy where ¢ is a positive
i n

constant.  The abeve argument boiis down to P(Uksﬁ) = 1im P{Y(tn + k) Jt Yo

n e o

o -1 K . -1k, : . . . ..

L1oosup wiﬁitr) C 'v“) = F{cC r ). As F is a proper distribution, we say rinc
N>

-1

\ ] : K - : C
v large ensuah such that F{c - 7) > q. Thus trnere is a k such that

, ks o , .S . .
o ") Pl However * for any s - 0 &5 we have already noticed in
. - .o o ‘ v S, Al - .
tne course of the proo? of Lemma 5.2. This nowes Poo 70 By for s 0 the

anty possibility and conciudes the arqument.
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Step 2. We sho: now that if {sn} is a sequence of positive numbers with
1im Sy = 0 then 1im © "\ = A a.s. for any A ¢ T, where T is the tail o-field
n-»o n--co

of {Y(t): t ¢ |0,»)}. Indeed, {Y(t)} was assumed to be right-continuous, in

which case it is known that Ft = 1im Feas (see e.qa. [22]) where Ft is the
N-oo n
s

c-algebra generated by {Y(u): 0 < u < t}. Since P(0 nAlF ) = P(A]Ft) for

+
tSn

S
t > 0, we get P(A'lFt) = P(AlFt) with A' = 1im ¢ "A on letting n>o. Because

n-oo

oA is decreasing in s and o°A > A for s > 0 we conclude that A = A' a.s.

Step 3. We shall next show that {Y(t)/xt} converges a.s. as t-o for some
constants {xt}. Indeed, choose g ¢ (0,1) such that F(xo) = q for a continuity

point X0 of F. Then Nq must be of type I. Indeed, assume the contrary. Then

by Lemmas 5.2 and 2.3, wq must assume at least one positive value out of P(wq = 0)

and P(wq = 1). Assume for definiteness that P(wq = 0) > 0. Then 0 < F(xo) < P(AO) =

where A, = {wq > 0} = 1im {X(tn) € Jt } a.s. for some left-unbounded {Jt }. By

0 n->o n n

Steps 1 and 2 we deduce that one may find Aé with Aé = O'SAO and s > 0 such

< P(A') < P(A). By Lemma 5.1 we know that A' = 1im {X(tn)eJé }
Noo n

that F(xo)

} and according to Lemma 2.2(b) W_,,
tn q

for some left-unbounded intervals {J

with q' = P(Aé), is of type I, which contradicts Lemma 2.3(b) and proves that
wq is of type I. Thus Xy is a point of type I and therefore there exist some

left-unbounded intervals {It} with right-end points (x_} such that

t
A= Tim {Y(t) « It} a.s. and P(A) = F(xO). It is further easy to see that
-+
(5.5) Tim PLLY(t,) « Ly 38 V() - alt )xg)) = 0
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It is obvious that Tim {Y(t) « It} = 1im tY(tn) ‘ It Vo= 1im {Y(tn+s)clt +S} a.s.
N no n noo n
and (5.5) leads to
‘ (5.6) lln P({Y(tn+s)c1tn+s} A Y(t ) < alt )xg}) = 0
On the other hand, condition (B1) implies
. s
(5.7) :,lino Plalt )(xg - €), (-=,a(t )xge7)) =1
and
L
(5.8) Tim Rfa(t )(xg + €), (-=,a(t )xge%)) = 0
n-><
Stochastic monotonicity applied to (5.7) and (5.8) yields
. s 1
(5.9) 1im Ps(x,(-m,a(tn)xop )) =1
n-+co
uniformly for x < a(tn)(xo- e), and
b
g i -0 S =
(5.10) llno Ps (x5 (-=,a(t )xpp7)) = 0
uniformly for x > a(tn)(x0 + €)
Taking into account (5.9) and the continuity of F at Xy We get j
9
(5.11) Flxg) = 1im | P (x,(-, a(t )x0%)v, (dx)
0 Moo s n’"0 t, |
{x f_a(tnxo)} ]
s which is easily seen to be equivalent to \
¢ :
:'. (5.12) ;l: P(Y(tn) 5»a(tn)xo) = ;12 P({Y(tn +s) f~a(tn)x00 }q{Y(tn)ia(tnxo})
F-; where we have used the equality
L 4 )
b ‘ -0 S = ,S R . 9
. j Polxs(-=,a(t )x o )vtn(dx) PLOY(t, +s) < alt dxge™badv(t )-alt )xgh)
;J_. {yia(tn)xo} ]

y

....................
....................................................................




Proceeding in the same way as above, but using (5.1) instead of (5.9) we cet

(5.13) lim P(Y(tn)>a(tn)x0) = 1im P({Y(tn + s)>a(tn)xoos}n{Y(tn)>a(tn)x0})

n->co n-o
It is now easy to see that (5.6), (5.12) and (5.13) yield

(5.14) Tim P({¥(t_+ s)el

N>

S
tn+s} A {Y(t *s) < a(t )xp07}) = 0

Because Xg was chosen to be an arbitrary continuity point of F, we get

) —iv'.’—rv

lim X4 +S/xt =p"3 and since {tn} was assumed to be an arbitrary sequence with
N n n
‘ . = o . . . . . . =S

{,ﬂ llz t such that {X(tn)} converges in distribution we get llz xt+s/xt

o

5.4 for any s ¢ (0,8). It is easy to see that the latter equality implies

Pﬂr; Tim x,, /x, = p-s for any real s. Recall that lim {Y(t+s) ¢ I,} a.s. exists

- o TP e t

all s and the above considerations boil down to the existence of

-+
o
-

Tim {Y(t) < osxt} a.s. But p° may take any value as s is at our disposal.

It follows that {Y(t)/xt} converges a.s. to a 1imit X as t-«, and X was shown
to be non-degenerate by Lemma 5.2. Since Theorem 4.1 applies, its characteriza-

tion of F carries over to this case.

Step 4. To prove that the conditions of Theorem 5.1 are necessary, notice

first that tightness is an obvious prerequisite for convergence in distribution.

{;, Condition (B1) is obviously implied by the a.s. convergence of {Y(t)/xt} (as
r’ well as its equivalent form (B)) if we take i~  iccount Theorem 4.7.

_—

3 .

t;~j 6. Applications. Diffusions. It has been noticed by several authors that

diffusions are SM. Indeed, the birth-and-death process is SM(see e.q. [17]).

Since by a result of Stone [26] any diffusion is a limit of birth-and-death processes

............
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it follows that diffusions are SM. Next we shall give an a.s. convergence
criterion for Markov processes assuming second moments that may be applied to

diffusions. We need consider the following.

Condition (B2). There exist &§ > 0 and p # 1 such that

Tim Var(X(t + s)|{X(t) = c(t))

t-o0

min? [o%c(t) (1+e)-E(X(t+s) [ X(t)=c(t))],-[p c(t) (1-e)-E(X(t+s) [X(t)=c(t)) ]}

for c(t) = xa(t) with x ¢ R, € > 0 and s ¢ (0,6)
In what follows we shall write u(t) ~ v(t) whenever 1im u(t)/v(t)=1.
£
Theorem 6.1. Suppose that {Y(t):t ¢ [0,=)} is a right-continuous SM Markov
process with stationary transition probabilities, v

t
E(X(t)) - apt and Var (X(t)) - bp2t for some constants a,b and p with b > 0 and

<< Vg for t > s,

p # 1, and that Condition (B2) holds. Then {Y(t)/ot} converges a.s. as t » «
to a random variable X. If F(x) = P(X < x) then supp F is either the real line
or one of its half-lines, F is continuous except may be for x = 0, and strictly

increasing on supp F.

Proof. We shall show that the conditions of Theorem 5.1 are verified.
Indeed, by well-known properties for sequences of distribution functions (see
e.g. [22]) any subsequence of {X(t)/pt} contains another subsequence whose
1imit distribution's variance equals b and is therefore non-deaenerate. Thus

tightness follows. It remains to show that (B2) implies (B1). Notice that

P(X « (a,b)) = P(X - E(X) ¢ (a - E(X), b - E(X))
P(X € (‘C,C))
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where ¢ = min(b - E(X), -(a - E(X)). Specializing X, a and b to the guantities
that appear in (B1) and applying the Chebyshev's inequality we get that (B2)
implies (B1) and complete the proof. Examples of diffusions to which Theorem
6.1 applies include the Ornstein-Uhlenbeck processes (see e.a. [16]) and some
diffusion processes that approximate Galton-Watson processes (see [11], [13]

and [21]). In both cases E(Y(t)lY(O) = x) xeBt and Var (Y(t))mbe2Bt with

b>0and 8 >1. Such results for Ornstein-Uhlenbeck processes are derived by
using some heavy machinery developed for diffusion processes (see e.q. [24]).
For branching diffusions some analytic tools are available (see [3]). However,
even small perturbations in the transition probability functions of such
processes may destroy the martingale properties on which their study is based,

whereas the conditions of Theorem 6.1, being of the 1imit type, seem to be more

robust to such changes.

Branching processes. We shall derive a 1imit theorem for a branching

model in which the offspring of the individuals are no longer independent,
but strictly stationary. Stochastic monotonicity methods seem to allow one to

establish results where the classical proofs based on independence break down.

We shall pare the assumption down to the bare essentials so that our conditions
Lo will be formulated in terms of properties that are used in establishing stochastic
monotonicity results. We shall neither bother here with deriving assumptions

on the process that entail such conditions nor with finding minimal conditions

o ensuring our results. A more comprehensive study of such processes wili be

n-i taken up elsewhere. In [7] we studied SM branching models of [3], [13] and [25].

Suppose that {Zt: t . [0,=)} is a Markov process such that

if Zt > 0 and Zt+u = 0 if Zt =0

e
IR
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where ZE’; stands for the number of offspring at time t+u of the i-th of the
Zt individuals alive at time t.

In a Galton-Watson process, {ZE’J} are assumed i.i.d. and independent of Zt'
Consider next the following conditions

t,7,
t,u’

like the strictly stationary and ergodic process {Egu); i=1,2,...}

C(1) The sequence {Z i=1,2,...} is independent of Zt and is distributed

C(2) P(1im Zt =) =1 - P(lim Zt = 0)

toe tooo

C(3) For any {xu} with 1im P(ZE’

lim ,l > xu) e (0,1) one gets

- t,1 t,2 . t,1
(6.2) llino PUZE, > x T u Az > x 1) > 112 P({Zg?, > %)
Theorem 6.2. Suppose that {Zt} is a right-continuous process that satisfies
conditions C{1), C(2) and C(3), and E(Zt) < o, Then there exist some norming

constants {c(t)} with 1im c(t+s)/c(t) = e™> for some o > 1 such that

t+oo
{Z(t)/c(t)} converges a.s. to a random variable W. If F(x) = P(W < x), then F

is continuous and strictly increasing on (0,=).

W ~12x

Proof. Since Pu(x,(-m,y]) = P ZE’; < y) we can easily see that
i=1 7

increasing x means adding more non-negative variables to the sum, which of

course decreases its probability of being smaller or equals x. Thus {th

is SM. Notice now that (6.1) and C(1) lead to E(Zt+u) = E(Zt)E(Zu) whereas
C(1) and C(2) yield E(Zt) > 1. Thus there must exist a > 1 such that

E(Z.) = * for any t > 0.

¢)
Birkoff's ergodic theorem is easily seen to imply (B1) and also (B) in

the form
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(6.3) 1im P(

t-o

| _ as. | =
/Ty - e > €L, 7 0) =0

for any € > 0. If we define a(t) such that a~'(t) is the y-quantile of

the distribution function of Z, for P(1im Zt =0) < y <1 then by (6.3) we

o

conciude that 1 < Tim inf a(t+s)/a(t) < 1im sup a(t+s)/a(t) < «, so that

to o

condition (A) holds. It is easy to see, by the way {a(t)! were defined, that

any weakly convergent subsequence of {a(t)Zt} must have a non-degenerate

limit distribution F. To prove tightness for {a(t)Z,; we need to show that F(~)=1.
Assume the contrary and choose 1un} with Tim u, = e such that {a(t+un)zt+u )

N-><x

converges in distribution to F and {a(t+un)Zt’] } converges in distribution to

t+un
a limit G. Notice further that (6.1) leads to
D ;t

(6.4) W= ) W .

H

D Zy
where = means that W and ] W, . have the same distribution, whereas W is
i=1 b

distributed according to F and {W i} are distributed accordina to G. Further

t,
(6.4) leads to

(6.5) P(W = ) = f P( W, . = =)P(Z, = n)

Since {a(t)} satisfies condition (A) we get P(W = =) = P(wt,i = «) and by
C(3) the right-hand side of (6.5) would be larger than its left-hand side,
which is absurd. Thus P(W = =) = 0 and the condition of Theorem 5.1 are
checked.

As we mentioned before, the conditions of Theorem 6.2 may be relaxed.

. LW "W W
. - -




(3]

(4]

[5]

(6]

(7]

(8]

[9]

[10]

(1]

L2l

(i3]

[14]

W W W T W
- Pafte et

45

Perturbation factors may be allowed in (6.1) whereas some kind of dependence

for {Zt’;} on Zt in the manner of [19] and [20] may supercede condition C(1).
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